Figura iniziale Di Maio

Geophysical exploration and modelling of natural hazards

Staff: Rosa Di Maio, Ester Piegari, Umberto Riccardi

Post-Graduates: Eleonora Vitagliano, Claudio De Paola, Mauro La Manna, Rolando Carbonari, Payal Rani, Rosanna Salone, Roberto Manzo

The research activity is developed into two main paths:

  • Subsoil exploration for the study of shallow and deep geological and/or anthropic structures
  • Modelling of natural phenomena for the assessment of hazard scenarios associated with earthquakes, volcanic eruptions, hydrogeological instabilities, land subsidence, as well as soil and groundwater contamination.

 The research activity in the field of subsurface exploration is mainly focused on the use of geoelectric and electromagnetic prospecting methods for the characterization of anomaly sources in different application fields, while the modeling of phenomena of natural and/or anthropic origin is developed both through the integration and interpretation of data of different nature and through the use of numerical methods of geophysics and statistical physics.

Main research topics:

  • Geophysical methods (geoelectric, magnetometry, GPR, FDEM, TDEM) applied to hydrogeological, engineering, geo-environmental and archaeological issues
  • Development of new techniques and tools for integrated interpretation of microgeophysical (geoelectric, GPR) and thermographic data for the estimation of the state of conservation of architectural structures
  • Development of geophysical data inversion methods based on spectral analysis and global optimization techniques for the complete characterization of single and multiple anomaly sources
  • Electroseismic effects for the detection of possible precursors of seismic or volcanic events.
  • Simulation of complex natural phenomena (i.e., landslides and volcanic eruptions) through self-organized criticality models and cellular automata
  • Hydro-geophysical modeling for the estimation of soil and groundwater contamination and simulation of fluid propagation
  • Velocity and attenuation models from seismic noise recordings in volcanic environments
  • Modeling and monitoring of soil surface deformation phenomena through the integration of geodetic (GNSS, SAR), geological, hydrological and climatic data
  • Modeling and simulation of the dynamics of hydrothermal and geothermal systems through continuous magnetotelluric and gravity measurements.

National Collaborations:

  • Dipartimento di Ingegneria Civile, Edile e Ambientale, Università di Padova
  • Dipartimento di Ingegneria Industriale, Università di Padova
  • Dipartimento di Scienze della Terra e dell’Ambiente, Università di Pavia
  • Dipartimento di Matematica e Fisica, Università Roma TRE
  • Dipartimento di Fisica, Università di Napoli Federico II
  • Dipartimento di Ingegneria Civile, Edile e Ambientale, Università di Napoli Federico II
  • Dipartimento di Ingegneria Industriale, Università di Napoli Federico II
  • Dipartimento di Fisica E. Caianiello, Università di Salerno
  • Dipartimento di Geoingegneria e Tecnologie Ambientali, Università di Cagliari
  • INGV Sezione Osservatorio Vesuviano di Napoli
  • Istituto Superiore per la protezione e la Ricerca Ambientale, Servizio Geologico d’Italia

International Collaborations:

  • Department of Environmental and Natural Resources Engineering, Technological Educational Institute of Crete, Chania, Crete, Greece
  • School of Environmental Engineering, Technical University of Crete, Crete, Greece
  • Deltares, Institute for Applied Research in the Field of Water and Subsurface MH Delft, The Netherlands
  • Department of Earthquake Engineering, Tarbiat Modares University, Tehran, Iran
  • College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • École et Observatoire de Sciences de la Terre, University of Strasbourg, France
  • Institute de Physique du Globe, Strasbourg, France
  • Grupo de Investigación Geodesia de la Universidad Complutense de Madrid, Madrid, Spain
  • GFZ German Research Centre for Geosciences, Potsdam, Germany
esplor geof2
Fig. 1. Geological cross section reconstructed from geoelectrical surveys carried out at Mt. Faito (Naples, Italy) on a slope susceptible to debris-flow
 
esplor geof

Fig. 2. Correlation between geoelectrical and hydrogeological layers

 

esplor geof3

Fig. 3. a) Spontaneous Potential (SP) map of the Mt. Somma-Vesuvius volcanic area (Naples, Italy); b) volume of the inverted SP data.

 

esplor geof4

Fig. 4. Ischia island (Naples, Italy): 1D seismic velocity model from the diffuse wave field of seismic noise (c). Results of joint inversion of dispersion data (a) and average H/V spectral ratio (b).

 

esplor geof5

Fig. 5. Simulation of CO2 degassing in an active fault zone.

 

esplor geof6Fig. 6. Gravity record (blue curve) collected on Mt. Vesuvius (Naples, Italy) and residual gravity change (red curve) after removing gravity signal due to tides and meteo-marine effects.

 
 
archeometria medium
Archaeometry and Cultural Heritage
 

External collaborators: Claudia Di Benedetto, Vincenza Guarino

Archaeometry, or Archaeological Science, is the application of scientific techniques to the analysis of archaeological and Cultural Heritage materials. Geological methods, and mineralogical-petrographic techniques in particular, are those that best serve to obtain information on provenance and technological features of archaeological items made from geological materials (natural and synthetic). This multidisciplinary approach provides useful data on geomaterials used in the Cultural Heritage in order to assess their degradation processes and better plan conservation and restoration interventions. The research is also conducted in close cooperation with archaeologists with the aim of reconstructing the exchanges between ancient civilisations and evaluating their technological development.

Archaeometric investigations are carried out by means of a multi-analytical approach with facilities (portable and laboratory instruments) available at the DiSTAR

See the website of the CRACS (Center for Research on Archaeometry and Conservation Science) for further information

Ceramics

The mineralogical-petrographic approach is commonly used to find the provenance of pottery via the comparison with the raw materials composition and with the geological features of the territory. Furthermore, it is possible to reconstruct the production technologies of ceramics, from the preparation of the mixtures and coatings to firing dynamics (temperature, atmosphere). The research team at the DiSTAR has gained experience by investigating various ceramic classes (table ware, cooking ware, amphorae, bricks, etc.) of different periods and provenance. In particular, from Campanian archaeological sites (Cumae, Neapolis, Pompeii, Paestum, etc.), but also from other locations in Italy and abroad (Asia, Africa).

Mortars and plasters

An important part of the research is aimed at the study of geomaterials used as a binder (mortars and concretes), with a specific focus on those from Roman age in the Campanian context. Important data on raw material sources and their circulation can be obtained, along with the knowledge of the ancient production technologies. This can be a starting point to produce new types of binders and mortars, by studying the crystallization processes of new-forming phases. Furthermore, it is possible to recognise different building phases, evaluate degradation of geomaterials and help other scientists in formulating useful products for restoration, compatible with the materials in use and the environmental conditions.

Building and ornamental stones

The research is mainly focused on the study of the ornamental and building stones used in historic buildings, also in order to plan a possible reuse of the ancient quarries and promote the knowledge of the different lithotypes. The activity is carried out in collaboration with experts in the history of architecture and restoration to improve awareness of stones used in the Cultural Heritage, interpreting their degradation processes and helping in the proposal of long-lasting conservation plan. An important role is played by integrated diagnostics (along with other expertise) for interpreting the historical architecture features and steering conservative interventions.

Metals

The archaeometric investigation of ancient metals from the Mediterranean area (Bronze Age, Iron Age, Orientalising, etc.) performed at the DiSTAR mainly concern the mineralogical and petrographic characterisation of these objects. The research is also aimed at the eventual recovery and conservation of metal artefacts and at the study of the raw materials sources from the different metal deposits, by means of mineralogical-geochemical analysis (minor elements and traces, isotopic analysis, etc.).

Paintings

The archaeometric analyses on paintings are used to identify the substances used as pigments, along with their provenance and their production techniques. A particular role is played by of nondestructive testing, useful for analyses without taking samples and altering the investigated material.

Mineralogy

The main research areas in Mineralogy concern the crystal chemistry, structural complexity and systematics of various groups of silicates and non-silicates, base metal- and REE-bearing minerals, biominerals, gems, etc. Studies on interaction and impact of advanced bidimensional materials (grafene, MoS2, WS2) with biological ones are carried out. The analytical techniques used by the researchers, both in DiSTAR laboratories and in other scientific Labs, are optical microscopy, X-ray powder diffraction (XRPD), single-crystal X-ray diffraction (SC-XRD), scanning (SEM) and trasmission (TEM-HRTEM) electron microscopy with microanalysis (EDS, WDS, AEM), infrared spectroscopy (FTIR), X-ray fluorescence (XRF), ICP-OS spectrometry, LIBS spectrometry (calibration free method), thermal analyses (TG-DTA), etc. Minerals from European and extra-European areas are studied, as Somma-Vesuvius volcano, Phlegraean Fields, Sardinia, Alps, UK, Ireland, Iceland, Belgium, Poland, France, Australia, Peru, South Africa, USA, etc.

 
Mineralogia Applicata
Ricercatori afferenti: P. Cappelletti (Responsabile), G. Balassone, A. de Bonis, A. Colella, R. de Gennaro, V. Morra, D. Calcaterra, S.F. Graziano, C. Di Benedetto, C. Rispoli

Sono rivolte alla valorizzazione delle risorse minerarie italiane con particolare riguardo a minerali e rocce industriali. In questo settore sono presenti più linee di ricerca principali. Studio dei depositi piroclastici (italiani in particolar modo ma anche esteri) interessati da processi di mineralizzazione secondaria che hanno portato alla formazione di minerali di elevato interesse industriale. In questo ambito sono stati ricostruiti i meccanismi genetici delle zeoliti in alcune delle più importanti formazioni italiane ed in particolare il Tufo Giallo Napoletano, l’Ignimbrite Campana, il Tufo Giallo della Via Tiberina e le vulcanoclastiti della Sardegna settentrionale; per quanto riguarda i depositi esteri, sono state studiate le piroclastiti delle isole Canarie, dell’Eifel (Germania) e del Messico. Più di recente un importante filone di ricerca è stato indirizzato allo studio dei processi post-deposizionali avvenuti nell’isola di Surtsey (Islanda) a carico dei depositi vulcanici dell’isola, inserito in un progetto internazionale dell’ICDP (SUSTAIN, http://www.icdp-online.org/projects/world/europe/surtsey/details/).

Tutti questi studi hanno permesso di dimostrare che la zeolitizzazione di depositi riconducibili a meccanismi deposizionali di tipo colata piroclastica o, più genericamente, da flusso non può essere ricondotta a uno dei sei modelli genetici proposti da Mumpton (1979) e che per una corretta interpretazione è necessaria l’acquisizione di dettagliate informazioni geologiche, vulcanologiche oltre che naturalmente mineralogiche. Di pari passo sono state condotte ricerche a carattere cristallochimico per approfondire anche le conoscenze mineralogiche strutturali delle zeoliti di alcuni depositi sopramenzionati.

Impiego di zeolititi in settori di interesse tecnologico.

In particolare, è stata dimostrata la possibilità di utilizzare i tufi della Campania, a phillipsite e chabazite, quali ammendanti nei suoli ed apportatori di potassio. Particolare attenzione è stata rivolta alla possibilità di impiego di tali materiali nel comparto ceramico, sia quali fondenti in sostituzione parziale dei tradizionali e più costosi feldspati, sia quale materia prima per la preparazione di aggregati leggeri espansi (LWA). Quest’ultima metodologia è stata infine estesa al recupero di rifiuti del comparto lapideo per la produzione di LWA per il confezionamento di calcestruzzi alleggeriti strutturali.

Impiego di zeolititi nel comparto farmaceutico.

La collaborazione intrapresa con il Dipartimento di Chimica Farmaceutica dell’Università di Pavia in passato e più di recente con i dipartimenti di Ingegneria chimica, dei Materiali e della Produzione industriale e di Farmacia della Federico II nell’ambito di un finanziamento PRIN, ha consentito di dimostrare che le rocce ad alto tenore di zeolite possono essere impiegate quale cation-releasing-carrier per antibiotici in applicazioni topiche. E’ stato dimostrato, infatti, come sia possibile utilizzare zeolititi a clinoptilolite prevalente, quindi di un materiale a basso costo, quale carrier inorganico capace di cedere ioni Zn2+ scambiandoli con quelli contenuti nell’essudato traspirante attraverso l’epidermide. Ciò al fine di trarre vantaggio dall’azione coadiuvante dello zinco quando applicato insieme ad un antibiotico (eritromicina) nella terapia anti-acne.

Impiego di zeolititi nel settore ambientale

Le ricerche recenti sono dirette principalmente alla depurazione di reflui di centrali nucleari e alla successiva inertizzazione dei materiali contaminati ed alla valutazione del rischio indotto nell’alimentazione animale da mangimi a base di prodotti minerali.

Collaborazioni:

 Dr. Marie D. Jackson, Utah University, USA

 Prof. Magnus T. Gudmundsson, Icelandic University, Iceland

 Dr. Tobias B Wiesenberger, Iceland Geological Survey, Iceland

 Prof. A. Langella, dr. M. Mercurio: Dipartimento di Scienze per la Biologia, la Geologia e l'Ambiente Università del Sannio di Benevento

 Prof. R. Laviano: Dipartimento Geomineralogico Università di Bari;

 Prof. D. Gatta: Dipartimento di Scienze della Terra, Università di Milano

Prof. D. Bish.: Geology Department, Indiana University Bloomington (USA)

Dott. M. Dondi, dott. C. Zanelli: Istituto di Scienza e Tecnologia dei Materiali Ceramici, CNR-ISTEC;

Enti e Società con le quali si collabora:

 Italiana Zeoliti Pigneto (MO),

 CNR- ISTEC, Faenza

 CBC Minerali, Vignola, (MO)

 Istituto Internazionale del Marmo (MI) Ing. P. Marone;

 Marmomacchine (MI) Ing. P. Marone;

miner applic 11) Backscattered electron showing A) the partial alteration of analcime to phillipsite in a lapillus vesicle and B) the growth of tobermorite in a vesicle with phillipsite surface texture. Da Prouse et al., 2020 Alteration progress within the Surtsey hydrothermal system, SW Iceland – A time-lapse petrographic study of cores drilled in 1979 and 2017 Journal of Volcanology and Geothermal Research 392 (2020) 106754

miner applic 22) Relative distributions of phillipsite, analcime and tobermorite in the Surtsey drill cores based on A) x-ray diffraction (wt.%) and B) & C) point counts (vol.%). Overall, analcime content has increased at nearly all depths, although it varies from sample to sample. Phillipsite content has noticeably increased only in certain samples above 65.4 m depth. SE-02b contains slightly less phillipsite than SE-01 in the depth interval between 65.4 and 138.4 m. The top and bottom of the poorly altered zones situated between about 138-150 m show phillipsite, but no increase in analcime and tobermorite with depth or time. Tobermorite has mostly increased above water level and towards the bottom of the drill hole, but has decreased overall in the zone of maximum temperature. Due to incomplete core recovery in SE-01 only cutting samples were available at some depth intervals within the poorly consolidated zone and towards the bottom of the drill core. Da Prouse et al., 2020 Alteration progress within the Surtsey hydrothermal system, SW Iceland – A time-lapse petrographic study of cores drilled in 1979 and 2017 Journal of Volcanology and Geothermal Research 392 (2020) 106754
miner applic 33) Integrated log displaying the relationship between temperature, alteration progress and maturation of palagonitic processes in altered glass determined through petrographic investigations of thin sections in the archived 1979 SE-01drill core and the 2017 SE-02b drill core samples. Da Prouse et al., 2020 Alteration progress within the Surtsey hydrothermal system, SW Iceland – A time-lapse petrographic study of cores drilled in 1979 and 2017 Journal of Volcanology and Geothermal Research 392 (2020) 106754
miner applic 44) Examples of the behavior of different materials during hot-stage microscope runs at constant thermal rate (A) and in isothermal conditions (B). Lightweight aggregates from waste materials: Reappraisal of expansion behavior and prediction schemes for bloating Construction and Building Materials 127 (2016) 394–409
miner applic 55) Microstructure and pore distribution of LWA: as cumulative number (A), cumulative volume (B). Lightweight aggregates from waste materials: Reappraisal of expansion behavior and prediction schemes for bloating Construction and Building Materials 127 (2016) 394–409
miner applic 66) SEM micrographs of lightweight aggregates. Structural Concretes with Waste-Based Lightweight Aggregates: From Landfill to Engineered Materials Environ. Sci. Technol. 2009, 43, 7123–7129
miner applic 77) Thermal properties of starting materials by TG/DSC coupled with FTIR-EGA. Surface-modi ed phillipsite-rich tuff from the Campania region (southern Italy) as a promising drug carrier: An ibuprofen sodium salt trial American Mineralogist, Volume 103, pages 700–710, 2018
 
miner applic cover8) Physico-chemical and thermal properties of IBU. Surface-modi ed phillipsite-rich tuff from the Campania region (southern Italy) as a promising drug carrier: An ibuprofen sodium salt trial American Mineralogist, Volume 103, pages 700–710, 2018
Isotope Geochemistry
Partecipants
Prof. Massimo D’Antonio
Prof. Paola Petrosino
Prof. Vincenzo Morra
Prof. Leone Melluso
Dr. Ciro Cucciniello
Dr. Lorenzo Fedele
Collaborators (permanent)
Dr. Ilenia Arienzo, PhD – INGV-OV, Napoli
Dr. Valeria Di Renzo, PhD – ARPAC, Napoli
Dr. Meritxell Aulinas Junca, Universitat de Barcelona, Barcellona, Spagna
Collaborators (non permanent)
Dr. Gianluca Cirillo, dottorando – DiSTAR
Dr. Carlo Pelullo, dottorando – DiSTAR
Dr. Bruna Saar de Almeida, dottoranda – DiSTAR
Dr. Federica Totaro, dottoranda – DiSTAR
Dr. Raffaella S. Iovine, PhD – GZG, Göttingen, Germania

Chemostratigrafia isotopica di campioni di tefra distali rinvenuti in un carotaggio effettuato nel bacino lacustre di San Gregorio Magno (prov. di Salerno).

La Geochimica Isotopica è il ramo della scienza che utilizza la composizione isotopica degli elementi chimici naturali per eseguire datazioni assolute di campioni di materiali geologici oppure come tracciante di processi geologici.

La Geochimica degli Isotopi Radiogenici utilizza elementi chimici generalmente ad alto numero atomico, quali lo stronzio, il neodimio e il piombo. La composizione isotopica di questi elementi chimici varia in seguito alla loro permanenza più o meno lunga in “serbatoi” della Terra, ossia porzioni diverse di mantello o di crosta. Durante tale permanenza, l’isotopo radiogenico di un elemento chimico aumenta per effetto del decadimento radioattivo di un altro elemento chimico genitore. Per esempio, lo 87Sr aumenta nel tempo a causa del decadimento radioattivo del 87Rb.

La Geochimica degli Isotopi Stabili utilizza il frazionamento tra gli isotopi di un elemento chimico generalmente a basso numero atomico, quali l’idrogeno, il boro, l’ossigeno, l’azoto e lo zolfo. Il frazionamento isotopico consiste nell’arricchimento di un isotopo più leggero rispetto a uno più pesante, o viceversa, di un dato elemento chimico nel corso di processi naturali, quali: trasformazione di minerali durante un evento metamorfico; precipitazione di minerali di neoformazione nella diagenesi o nella pedogenesi; evaporazione e condensazione di acqua; produzione di materia organica tramite fotosintesi o chemosintesi; evoluzione magmatica a sistema aperto.

geoch isotIsotopic chemostratigraphy of tephra samples collected from a drill-hole carried out in the San Gregorio Magno lacustrine basin (near Salerno, Southern Italy).

Isotope Geochemistry is the branch of knowledge that uses the isotopic composition of naturally occurring chemical elements to either perform absolute dating of geological material samples or trace geological processes.

The Radiogenic Isotope Geochemistry utilizes chemical elements generally having high atomic number, such as strontium, neodymium and lead. The isotopic composition of such elements varies as a consequence of their longer or shorter persistence in a “reservoir” of the Earth, that can be a portion of the mantle or crust. During such a permanence time, the radiogenic isotope of an element growths because of the radioactive decay of another, parent chemical element. For instance, 87Sr increases with time as a consequence of the radioactive decay of 87Rb.

The Stable Isotope Geochemistry utilizes the fractionation among the isotopes of a chemical element generally having low atomic number, such as hydrogen, boron, oxygen, nitrogen and sulphur. The isotopic fractionation consists in enrichment of a lighter isotope relative to a heavier isotope, and vice versa, of a chemical element, in the course of natural processes, such as: transformation of minerals during a metamorphic event; precipitation of secondary minerals during diagenesis or pedogenesis; water evaporation or condensation; organic matter generation through photosynthesis of chemosynthesis; open-system magmatic evolution.

Isotope Geochemistry provides efficient tools for investigating several geological processes, such as: assimilation of crustal rocks by a crystallizing magma; mixing among distinct magma batches; mixing among water masses of variable provenance; mixing among clasts of variable composition in a sedimentary basin. In volcanology, 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb and d11B values allow drawing of isotope chemostratigraphies for the reconstruction, in conjunction with the variation of other geochemical parameters, of the evolution through time of the magmatic feeding system of a volcano, even during a single eruption. In petrology, the isotopic tracers, combined with trace element contents and ratios, allow quantitative modelling of magma source regions, as well as genesis and evolution processes of magmas in different geodynamic settings on Earth. Combining radiogenic and stable isotopes (see figure) allows discriminating between mantle source enrichment processes involving sedimentary components, from crustal contamination processes. Moreover, stable isotopes allow estimating the equilibrium temperature of magmatic, metamorphic and metallogenic processes.

Lastly, the isotopes of several metals allow tracing the effects of anthropogenic activities on both environment and man, such as: groundwater and soil pollution by industrial or agriculture wastewaters; soil pollution by aerosols containing tetraethyl lead from gasoline; pollution of human tissues by toxic metals, such as Pb, Cr and Cd. In the agro-food sector, radiogenic isotopes are employed since a few years as tracers for relating several food and beverages (cheeses, vegetables, wine, oil) to the territory where raw materials are produced, in order to shed light on possible food fraud

isotopica1 
logoUniNa   
scuola psb
universitaly

Dove siamo

  whatsapp

Trovaci

  Trovaci su Google Map
 
 

Iscriviti alla newsletter